
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 10: Virtual memory

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda
1. Midterm.

2. Strategie for P2.

3. Review of deadlocks.

4. Virtual memory.

2

Midterm exam
Online using Crabster.org
Wed Jun 24 3:00 to 5:00
pm EDT.

If you need an
accommodation, please
let us know soon.

3

Material for midterm:

1. All the lecture topics from
start until end of lecture 9 on
deadlock.

2. All the labs on these topics.

3. Projects 1 and 2.

Midterm exam
Two sample exams posted on web page.
Solutions in lab section next Friday and in review session
weekend before exam.
Try sample exams in exam setting before then.

4

Writing good P2 test cases
Need targeted test cases and stress tests.
Targeted test case:

Tests one or a few specific things.
Failure tells you exactly what’s wrong.
Autograder gives you results for your tests (!)

Stress tests:
Lots of concurrency, activities.
Tests for rare, non-deterministic interleavings.
Failure doesn’t say why – run under debugger?

5

Targeted test case
Want to test that lock() blocks when mutex held,
finishes when the lock is released. Does this work?

6

Thread A
create thread B;
m.lock();
yield();
:
m.unlock();
cout << "unlocked\n";

Thread B

cout << "About to lock\n";
m.lock();
:
cout << "Lock taken\n";

Not a valid test. No way to know B ever runs before A
finishes. Would at minimum have to add a yield().

Waits-for graph

Cycle represents a
deadlock.

7

thread A

thread B

resource xresource y

Owned by

Owned by

Waiting for

Waiting for

Waits-for graph

8

thread A

thread B

resource xresource y

Owned by

Owned by

Waiting for

Waiting for
Thread A
x.lock();
y.lock();
...
y.unlock();
x.unlock();

1

3

Thread B
y.lock();
x.lock();
...
x.unlock();
y.unlock();

2

4

Coping with deadlocks
Alternatives:
1. Ignore.

Typical OS strategy for application deadlocks.
Do deadlocked apps consume CPU?

2. Detect and fix.
Use waits-for graph to detect.
How to fix?

Could kill threads but not always safe to do so.
Invariants can be broken while a thread holds a lock.

Databases can rollback to a previous representation invariant state and
restart, but general purpose rollback is costly, difficult.

3. Prevent them from occurring.

9

Four necessary conditions for deadlock

1. Limited resources: Not enough to serve all threads simultaneously.

2. No preemption: Can’t force threads to give up resources.

3. Hold and wait: Threads hold resources while waiting to acquire
others.

4. Cyclical chain of requests.

10

Four necessary conditions for deadlock

1. Limited resources: Not enough to serve all threads simultaneously.

2. No preemption: Can’t force threads to give up resources.

3. Hold and wait: Threads hold resources while waiting to acquire
others.

4. Cyclical chain of requests. This can be avoided.

11

Eliminating circular chain
Define a global order over all resources, e.g., by numbering
them.

The numbering can be arbitrary but is usually least precious first
to most precious last (so you hold the most precious resources
the shortest amount of time.)

All threads acquire resources in this order.

The thread with the highest numbered resource can always run.

12

Dining philosophers

13

Solution:

Pick up the lower number
chopstick first, then pick up
the higher number chopstick.

Might get to a situation
where E blocks but D
proceeds with the highest
numbered chopstick, then C,
etc., until A finishes, then E
proceeds.

No deadlock.
4

3

21

5

A

E

D C

B

Eliminating the circular chain
But what if you already
hold the higher number
resource but also want
the lower number
resource?

You must first give up
the higher number, then
take them both in order.

You must rewrite your
code to ensure you
follow the pattern. It’s a
bug and you have to fix
it.

14

Thread A
x.lock();
y.lock();
...
y.unlock();
x.unlock();

Thread B
y.lock();
x.lock();
...
x.unlock();
y.unlock();

Thread B
y.lock();
y.unlock();
x.lock();
y.lock();
...
y.unlock();
x.unlock();

Global ordering of resources
If every thread acquires resources in order

How can we be sure that some thread can progress?

15

T1

R1 R2 R3 R4 R5 R6 R7

T2 T3 T4 T5

Preventing deadlock
What if we don’t grant resources that will lead to cycle in
waits-for-graph?

EECS 482 – Lecture 9 16

thread A

thread B

Lock xLock y

Thread A
x.lock();
y.lock();
...
y.unlock();
x.unlock();

Thread B
y.lock();
x.lock();
...
x.unlock();
y.unlock();

16

Threads and Concurrency
Physical reality:

Limited # of CPUs operating independently
Low-level H/W support: interrupts and test_and_set

Abstraction:
Threads can assume infinite CPUs
Locks for mutual exclusion, condition variables for
ordering constraints, and semaphores for both

Over-constrained synchronization  deadlock

17

OS abstractions

18

Operating System

Hardware

Applications

CPU Disk Physical memory

Thread File system Virtual memory

OS Abstractions

19

Operating System

Hardware

Applications

CPU Disk Physical memory

Thread File system Virtual memory

Memory management
Recall: Process = Set of threads + address space
Address space

All the memory space the process can use as it runs

Hardware interface:
Physical memory shared between processes

Potential abstractions:
Allow direct access to addresses in physical memory?
Partition physical memory across processes?

20

Abstraction provided by OS
Virtual memory. Address space can be larger than physical
memory.

Address independence. Same numeric address can be
used in different address spaces, yet remain logically
distinct.

Protection. One process can’t access data in another
process’s address space (actually controlled sharing).

21

Uni-programming
Consider a machine that runs one
process at a time.

Partition the memory, reserving
space for the OS.

Always load the process into same
spot in memory.

Virtual address = physical address.

fffff
.
.
.
80000

operating system

7ffff
.
.
.
00000

user process

Problems?

22

Could run multiple programs but only by swapping them back-and-forth
to disk.

fffff
.
.
.
80000

operating system

7ffff
.
.
.
00000

user process

Context switch

23

Physical memory Disk

A B

Context switch would be very slow so you couldn’t afford to do it often or you’d
enter a condition called thrashing, where the only work the system does is
swapping processes in and out of memory.

Uni-programming summary
Address space abstractions:

Virtual memory: No
Address Independence: Yes
Protection: Yes

Pro: Simple (early OSes for PCs used this)
Con: Expensive context switch

24

Multi-programming

Allow >1 address space in physical memory.
Programs written assuming address range starts at 0.

Only 1 process can start at physical address 0.
Implies address translation necessary for address
independence.

25

Static address translation
Compiler generates addresses
starting at 0.

Linker-loader adds an offset to
instructions as they’re loaded into
memory.

For example,

MOV 0x10, %eax

becomes

MOV 0x20010, %eax

fffff
.
40000

operating system

3ffff
.
20000

user process 1

1ffff
.
00000

user process 2

26

Register offset addressing
Arrays, structs, pointers use
indexing.

Any issues with this?

%ebx could be negative or
greater than the partition size!

Difficult to trap invalid accesses.

Could add dynamic checks
before loads/stores.

Very expensive for general-
purpose languages like C and
C++.

27

Add 0x10 to %ebx and load
value at that address.

MOV %ebx(0x10), %eax

Dynamic address translation
Problem is application gets “last move.”

1. Compiler generates machine code (app).
2. Linker-loader translates addresses (OS).
3. Register values used to calculate addresses (app).

Dynamic translation: system has the last move.
Hardware (MMU) translates all memory references.
Virtual address: address used by the process.
Physical address: address in physical memory.

28

Dynamic address translation

Address independence

Virtual addresses are scoped to 1 process.

Protection

One process can’t refer to another’s address space.

Virtual memory

VA only needs to be in physical mem. when accessed.

Allows changing translations on the fly.
29

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Dynamic address translation

30

Many ways to implement the translator.
Tradeoffs
1. Flexibility (sharing, growth, virtual memory)
2. Size of data needed to support translation
3. Speed of translation

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Dynamic address translation

31

MMU strategies we’ll discuss:
1. Base and bounds.
2. Segmentation.
3. Paging.

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Dynamic address translation

32

MMU strategies we’ll discuss:
1. Base and bounds.
2. Segmentation.
3. Paging.

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Base and bounds
physical
memory

base +
bound

base

0

33

Load each process into a
contiguous region of physical
memory.

Prevent process from accessing
data outside its region.

Base register: starting physical
address.

Bound register: size of region.

bound
address
space

0

Base and bounds
physical
memory

base +
bound

base

0

bound
address
space

0

34

MMU translation()
{
if (virtual address > bound)

{
trap to the kernel;
(probably) kill the

process (core dump);
}

else
physical address = base +

virtual address;
}

What happens on a context switch?

Base and bounds
physical
memory

base +
bound

base

0

bound
address
space

0

35

Pros:
1. Fast.
2. Simple hardware support.

Cons?
1. Can the address space be

larger than physical memory?
2. Any undesirable effects as

address spaces created and
destroyed over time?

3. How would you grow the
address space?

4. How would you share parts of
the address space across
processes? Why would you
want to do this?

Base and bounds
physical
memory

base +
bound

base

0

bound
address
space

0

36

Pros:
1. Fast.
2. Simple hardware support.

Cons?
1. Can the address space be

larger than physical memory?
2. Any undesirable effects as

address spaces created and
destroyed over time?

3. How would you grow the
address space?

4. How would you share parts of
the address space across
processes? Why would you
want to do this?

Must be physical memory
physical
memory

base +
bound

base

0

37

Load each process into a
contiguous region of physical
memory.

Prevent process from accessing
data outside its region.

Base register: starting physical
address.

Bound register: size of region.

bound
address
space

0

Base and bounds
physical
memory

base +
bound

base

0

bound
address
space

0

38

Pros:
1. Fast.
2. Simple hardware support.

Cons?
1. Can the address space be

larger than physical memory?
2. Any undesirable effects as

address spaces created and
destroyed over time?

3. How would you grow the
address space?

4. How would you share parts of
the address space across
processes? Why would you
want to do this?

External fragmentation
Processes come and go,
leaving a mishmash of
available memory regions.

Wasted memory between
allocated regions.

Must move things around,
compacting memory
periodically to solve.

P2

P3

P1

P4

39

Base and bounds
physical
memory

base +
bound

base

0

bound
address
space

0

40

Pros:
1. Fast.
2. Simple hardware support.

Cons?
1. Can the address space be

larger than physical memory?
2. Any undesirable effects as

address spaces created and
destroyed over time?

3. How would you grow the
address space?

4. How would you share parts of
the address space across
processes? Why would you
want to do this?

Difficult to grow the address space
physical
memory

base +
bound

base

0

bound
address
space

0

41

Load each process into a
contiguous region of physical
memory.

There are no holes in the
memory unless we create them.

2000

0

3000

0

It’s a contiguous address space

How can stack and heap grow independently?
There are no “holes” in the address space, so growing the heap by
1000 bytes requires adding 1000 to every address in stack unless
you leave a lot unused physical memory in the middle.

42

physical
memory

base + bound

base

0

bound
address
space

0

Stack

Heap

Stack

Heap

Stack

Heap

Can’t share memory
Can’t share part of an address space between processes.

physical
memory

data (P2)

data (P1)

code

virtual
address
space 1

data

code

virtual
address
space 2

data

code

43

Impossible

Base and bounds
physical
memory

base +
bound

base

0

bound
address
space

0

44

Pros:
1. Fast.
2. Simple hardware support.

Cons:
1. No virtual memory.
2. External fragmentation.
3. Hard to selectively grow parts

of address space.
4. No controlled sharing.

Root cause: Each address space
must be contiguous in memory.

Dynamic address translation

45

Break the requirement that the process space be
contiguous.

MMU strategies we’ll discuss:
1. Base and bounds.
2. Segmentation.
3. Paging.

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Segmentation

Divide address space into segments, regions of memory
that are:

1. Contiguous in physical memory.

2. Contiguous in virtual address space.

3. Variable size.

46

Segmentation
physical
memory

46ff

4000
code

2fff

2000

stack

4ff
0 data

virtual
memory

segment 3
fff

0

stack

virtual
memory

segment 1
4ff

0 data

virtual
memory

segment 0
6ff

0
code

47

Segmentation

Virtual address is of the form: (segment #, offset)
Physical address = base for segment + offset

Ways to specify the segment number:
1. High bits of address
2. Special register
3. Implicit to instruction opcode

48

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment

Segmentation

Virtual address is of the form: (segment #, offset)
Physical address = base for segment + offset

Ways to specify the segment number:
1. High bits of address
2. Special register
3. Implicit to instruction opcode

49

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment

Segmentation: Translation

Physical address for virtual address (3, 100)?
2100

Physical address for virtual address (0, ff)?
40ff

Physical address for virtual address (2, ff)?
Physical address for virtual address (1, 2000)?

50

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment

Valid vs. invalid addresses

Not all virtual addresses are valid.
Valid  address is part of virtual address space.
Invalid  virtual address is illegal to access.

Accessing invalid address causes trap to OS.
Reasons for virtual address being invalid?

Invalid segment number.
Offset within valid segment beyond bound.

51

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment

Segmentation
How to grow a segment?

Different segments can have different protection
E.g., code is usually read only (allows fetch, load,...)
E.g., data is usually read/write (allows load, store,...)
Fine-grained protection in base and bounds?

What must be changed on a context switch?

52

Benefits of Segmentation
Multiple areas of address space can grow separately.
Easy to share part of address space.

53

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
3 2000 1000 stack segment

Segment # Base Bounds Description
0 4000 700 code segment
1 1000 300 data segment
3 500 1000 stack segment

Process 1

Process 2

Drawbacks of Segmentation
1. External fragmentation
2. Can address space be larger than physical memory?

How can we:
1. Make memory allocation easy?
2. Not have to worry about external fragmentation?
3. Allow address space size to be > physical memory?

54

Next up …

Paging

55

Next time …

56

MMU strategies we’ll discuss:
1. Base and bounds.
2. Segmentation.
3. Paging.

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 10: Virtual memory
	Agenda
	Midterm exam
	Midterm exam
	Writing good P2 test cases
	Targeted test case
	Waits-for graph
	Waits-for graph
	Coping with deadlocks
	Four necessary conditions for deadlock
	Four necessary conditions for deadlock
	Eliminating circular chain
	Dining philosophers
	Eliminating the circular chain
	Global ordering of resources
	Preventing deadlock
	Threads and Concurrency
	OS abstractions
	OS Abstractions
	Memory management
	Abstraction provided by OS
	Uni-programming
	Context switch
	Uni-programming summary
	Multi-programming
	Static address translation
	Register offset addressing
	Dynamic address translation
	Dynamic address translation
	Dynamic address translation
	Dynamic address translation
	Dynamic address translation
	Base and bounds
	Base and bounds
	Base and bounds
	Base and bounds
	Must be physical memory
	Base and bounds
	External fragmentation
	Base and bounds
	Difficult to grow the address space
	It’s a contiguous address space
	Can’t share memory
	Base and bounds
	Dynamic address translation
	Segmentation
	Segmentation
	Segmentation
	Segmentation
	Segmentation: Translation
	Valid vs. invalid addresses
	Segmentation
	Benefits of Segmentation
	Drawbacks of Segmentation
	Next up …
	Next time …

