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Agenda
1. Midterm.

2. Strategie for P2.

3. Review of deadlocks.

4. Virtual memory.
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Midterm exam
Online using Crabster.org
Wed Jun 24 3:00 to 5:00 
pm EDT.

If you need an 
accommodation, please 
let us know soon.
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Material for midterm:

1. All the lecture topics from 
start until end of lecture 9 on 
deadlock.

2. All the labs on these topics.

3. Projects 1 and 2.



Midterm exam
Two sample exams posted on web page.
Solutions in lab section next Friday and in review session 
weekend before exam.
Try sample exams in exam setting before then.
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Writing good P2 test cases
Need targeted test cases and stress tests.
Targeted test case:

Tests one or a few specific things.
Failure tells you exactly what’s wrong.
Autograder gives you results for your tests (!)

Stress tests:
Lots of concurrency, activities.
Tests for rare, non-deterministic interleavings.
Failure doesn’t say why – run under debugger?
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Targeted test case
Want to test that lock( ) blocks when mutex held, 
finishes when the lock is released.  Does this work?
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Thread A
create thread B;
m.lock( );
yield( );
:
m.unlock( );
cout << "unlocked\n";

Thread B

cout << "About to lock\n";
m.lock( );
:
cout << "Lock taken\n";

Not a valid test.  No way to know B ever runs before A
finishes.  Would at minimum have to add a yield( ).



Waits-for graph

Cycle represents a 
deadlock.
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Waits-for graph
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thread A

thread B

resource xresource y

Owned by

Owned by

Waiting for

Waiting for
Thread A
x.lock( );
y.lock( );
...
y.unlock( );
x.unlock( );

1

3

Thread B
y.lock( );
x.lock( );
...
x.unlock( );
y.unlock( );

2
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Coping with deadlocks
Alternatives:
1. Ignore.

Typical OS strategy for application deadlocks.
Do deadlocked apps consume CPU?

2. Detect and fix.
Use waits-for graph to detect.
How to fix?

Could kill threads but not always safe to do so.
Invariants can be broken while a thread holds a lock.

Databases can rollback to a previous representation invariant state and 
restart, but general purpose rollback is costly, difficult.

3. Prevent them from occurring.

9



Four necessary conditions for deadlock

1. Limited resources:  Not enough to serve all threads simultaneously.

2. No preemption:  Can’t force threads to give up resources.

3. Hold and wait:  Threads hold resources while waiting to acquire 
others.

4. Cyclical chain of requests.
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Four necessary conditions for deadlock

1. Limited resources:  Not enough to serve all threads simultaneously.

2. No preemption:  Can’t force threads to give up resources.

3. Hold and wait:  Threads hold resources while waiting to acquire 
others.

4. Cyclical chain of requests.  This can be avoided.
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Eliminating circular chain
Define a global order over all resources, e.g., by numbering 
them.

The numbering can be arbitrary but is usually least precious first 
to most precious last (so you hold the most precious resources 
the shortest amount of time.)

All threads acquire resources in this order.

The thread with the highest numbered resource can always run.
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Dining philosophers
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Solution:

Pick up the lower number 
chopstick first, then pick up 
the higher number chopstick.

Might get to a situation 
where E blocks but D 
proceeds with the highest 
numbered chopstick, then C, 
etc., until A finishes, then E 
proceeds.

No deadlock.
4

3
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Eliminating the circular chain
But what if you already 
hold the higher number 
resource but also want 
the lower number 
resource?

You must first give up 
the higher number, then 
take them both in order.

You must rewrite your 
code to ensure you 
follow the pattern.  It’s a 
bug and you have to fix 
it.
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Thread A
x.lock( );
y.lock( );
...
y.unlock( );
x.unlock( );

Thread B
y.lock( );
x.lock( );
...
x.unlock( );
y.unlock( );

Thread B
y.lock( );
y.unlock( );
x.lock( );
y.lock( );
...
y.unlock( );
x.unlock( );



Global ordering of resources
If every thread acquires resources in order

How can we be sure that some thread can progress?
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T1
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T2 T3 T4 T5



Preventing deadlock
What if we don’t grant resources that will lead to cycle in 
waits-for-graph?

EECS 482 – Lecture 9 16

thread A

thread B

Lock xLock y

Thread A
x.lock( );
y.lock( );
...
y.unlock( );
x.unlock( );

Thread B
y.lock( );
x.lock( );
...
x.unlock( );
y.unlock( );
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Threads and Concurrency
Physical reality:

Limited # of CPUs operating independently
Low-level H/W support: interrupts and test_and_set

Abstraction:
Threads can assume infinite CPUs
Locks for mutual exclusion, condition variables for 
ordering constraints, and semaphores for both

Over-constrained synchronization  deadlock
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OS abstractions
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OS Abstractions
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Memory management
Recall: Process = Set of threads + address space
Address space

All the memory space the process can use as it runs

Hardware interface:
Physical memory shared between processes

Potential abstractions:
Allow direct access to addresses in physical memory?
Partition physical memory across processes?
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Abstraction provided by OS
Virtual memory. Address space can be larger than physical 
memory.

Address independence.  Same numeric address can be 
used in different address spaces, yet remain logically 
distinct.

Protection. One process can’t access data in another 
process’s address space (actually controlled sharing).
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Uni-programming
Consider a machine that runs one 
process at a time.

Partition the memory, reserving 
space for the OS.

Always load the process into same 
spot in memory.

Virtual address = physical address.

fffff
.
.
.
80000

operating system

7ffff
.
.
.
00000

user process

Problems?
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Could run multiple programs but only by swapping them back-and-forth 
to disk.



fffff
.
.
.
80000

operating system

7ffff
.
.
.
00000

user process

Context switch
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Physical memory Disk

A B

Context switch would be very slow so you couldn’t afford to do it often or you’d 
enter a condition called thrashing, where the only work the system does is 
swapping processes in and out of memory.



Uni-programming summary
Address space abstractions:

Virtual memory: No
Address Independence: Yes
Protection: Yes

Pro: Simple (early OSes for PCs used this)
Con: Expensive context switch
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Multi-programming

Allow >1 address space in physical memory.
Programs written assuming address range starts at 0.

Only 1 process can start at physical address 0.
Implies address translation necessary for address 
independence.
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Static address translation
Compiler generates addresses 
starting at 0.

Linker-loader adds an offset to 
instructions as they’re loaded into 
memory.

For example,

MOV 0x10, %eax

becomes

MOV 0x20010, %eax

fffff
.
40000

operating system

3ffff
.
20000

user process 1

1ffff
.
00000

user process 2
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Register offset addressing
Arrays, structs, pointers use 
indexing.

Any issues with this?

%ebx could be negative or 
greater than the partition size!

Difficult to trap invalid accesses.

Could add dynamic checks 
before loads/stores.

Very expensive for general-
purpose languages like C and 
C++.
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# Add 0x10 to %ebx and load
# value at that address.

MOV %ebx(0x10), %eax



Dynamic address translation
Problem is application gets “last move.”

1. Compiler generates machine code (app).
2. Linker-loader translates addresses (OS).
3. Register values used to calculate addresses (app).

Dynamic translation: system has the last move.
Hardware (MMU) translates all memory references.
Virtual address: address used by the process.
Physical address: address in physical memory.
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Dynamic address translation

Address independence

Virtual addresses are scoped to 1 process.

Protection

One process can’t refer to another’s address space.

Virtual memory

VA only needs to be in physical mem. when accessed.

Allows changing translations on the fly.
29
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Dynamic address translation

30

Many ways to implement the translator.
Tradeoffs
1. Flexibility (sharing, growth, virtual memory)
2. Size of data needed to support translation
3. Speed of translation

user 
process

translator 
(MMU)

physical 
memoryvirtual

address
physical
address



Dynamic address translation
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MMU strategies we’ll discuss:
1. Base and bounds.
2. Segmentation.
3. Paging.

user 
process

translator 
(MMU)

physical 
memoryvirtual

address
physical
address



Dynamic address translation
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MMU strategies we’ll discuss:
1. Base and bounds.
2. Segmentation.
3. Paging.

user 
process

translator 
(MMU)

physical 
memoryvirtual

address
physical
address



Base and bounds
physical
memory

base + 
bound

base

0
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Load each process into a 
contiguous region of physical 
memory.

Prevent process from accessing 
data outside its region.

Base register: starting physical 
address.

Bound register: size of region.

bound
address 
space

0



Base and bounds
physical
memory

base + 
bound

base

0

bound
address 
space

0
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MMU translation( )
{
if ( virtual address > bound )

{
trap to the kernel;
(probably) kill the

process (core dump);
}

else
physical address = base +

virtual address;
}

What happens on a context switch?



Base and bounds
physical
memory

base + 
bound

base

0

bound
address 
space

0
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Pros:
1. Fast.
2. Simple hardware support.

Cons?
1. Can the address space be 

larger than physical memory?
2. Any undesirable effects as 

address spaces created and 
destroyed over time?

3. How would you grow the 
address space?

4. How would you share parts of 
the address space across 
processes? Why would you 
want to do this?



Base and bounds
physical
memory

base + 
bound

base

0

bound
address 
space

0
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Pros:
1. Fast.
2. Simple hardware support.

Cons?
1. Can the address space be 

larger than physical memory?
2. Any undesirable effects as 

address spaces created and 
destroyed over time?

3. How would you grow the 
address space?

4. How would you share parts of 
the address space across 
processes? Why would you 
want to do this?



Must be physical memory
physical
memory

base + 
bound

base

0
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Load each process into a 
contiguous region of physical 
memory.

Prevent process from accessing 
data outside its region.

Base register: starting physical 
address.

Bound register: size of region.

bound
address 
space

0



Base and bounds
physical
memory

base + 
bound

base

0

bound
address 
space

0
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Pros:
1. Fast.
2. Simple hardware support.

Cons?
1. Can the address space be 

larger than physical memory?
2. Any undesirable effects as 

address spaces created and 
destroyed over time?

3. How would you grow the 
address space?

4. How would you share parts of 
the address space across 
processes? Why would you 
want to do this?



External fragmentation
Processes come and go, 
leaving a mishmash of 
available memory regions.

Wasted memory between 
allocated regions.

Must move things around, 
compacting memory 
periodically to solve.

P2

P3

P1

P4
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Base and bounds
physical
memory

base + 
bound

base

0

bound
address 
space

0
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Pros:
1. Fast.
2. Simple hardware support.

Cons?
1. Can the address space be 

larger than physical memory?
2. Any undesirable effects as 

address spaces created and 
destroyed over time?

3. How would you grow the 
address space?

4. How would you share parts of 
the address space across 
processes? Why would you 
want to do this?



Difficult to grow the address space
physical
memory

base + 
bound

base

0

bound
address 
space

0
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Load each process into a 
contiguous region of physical 
memory.

There are no holes in the 
memory unless we create them.



2000

0

3000

0

It’s a contiguous address space

How can stack and heap grow independently?
There are no “holes” in the address space, so growing the heap by 
1000 bytes requires adding 1000 to every address in stack unless 
you leave a lot unused physical memory in the middle.
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physical
memory

base + bound

base

0

bound
address
space

0

Stack

Heap

Stack

Heap

Stack

Heap



Can’t share memory
Can’t share part of an address space between processes.

physical
memory

data (P2)

data (P1)

code

virtual
address
space 1

data

code

virtual
address
space 2

data

code
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Impossible



Base and bounds
physical
memory

base + 
bound

base

0

bound
address 
space

0
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Pros:
1. Fast.
2. Simple hardware support.

Cons:
1. No virtual memory.
2. External fragmentation.
3. Hard to selectively grow parts 

of address space.
4. No controlled sharing.

Root cause: Each address space 
must be contiguous in memory.



Dynamic address translation
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Break the requirement that the process space be
contiguous.

MMU strategies we’ll discuss:
1. Base and bounds.
2. Segmentation.
3. Paging.

user 
process

translator 
(MMU)

physical 
memoryvirtual

address
physical
address



Segmentation

Divide address space into segments, regions of memory 
that are:

1. Contiguous in physical memory.

2. Contiguous in virtual address space.

3. Variable size.
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Segmentation
physical
memory

46ff

4000
code

2fff

2000

stack

4ff
0 data

virtual
memory 

segment 3
fff

0

stack

virtual
memory 

segment 1
4ff

0 data

virtual
memory 

segment 0
6ff

0
code
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Segmentation

Virtual address is of the form: (segment #, offset)
Physical address = base for segment + offset

Ways to specify the segment number:
1. High bits of address 
2. Special register
3. Implicit to instruction opcode

48

Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment



Segmentation

Virtual address is of the form: (segment #, offset)
Physical address = base for segment + offset

Ways to specify the segment number:
1. High bits of address 
2. Special register
3. Implicit to instruction opcode
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Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment



Segmentation: Translation

Physical address for virtual address (3, 100)?
2100

Physical address for virtual address (0, ff)?
40ff

Physical address for virtual address (2, ff)?
Physical address for virtual address (1, 2000)?
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Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment



Valid vs. invalid addresses

Not all virtual addresses are valid.
Valid  address is part of virtual address space.
Invalid  virtual address is illegal to access.

Accessing invalid address causes trap to OS.
Reasons for virtual address being invalid?

Invalid segment number.
Offset within valid segment beyond bound.
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Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
2 n/a n/a unused
3 2000 1000 stack segment



Segmentation
How to grow a segment?

Different segments can have different protection
E.g., code is usually read only (allows fetch, load,...)
E.g., data is usually read/write (allows load, store,...)
Fine-grained protection in base and bounds?

What must be changed on a context switch?
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Benefits of Segmentation
Multiple areas of address space can grow separately.
Easy to share part of address space.
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Segment # Base Bounds Description
0 4000 700 code segment
1 0 500 data segment
3 2000 1000 stack segment

Segment # Base Bounds Description
0 4000 700 code segment
1 1000 300 data segment
3 500 1000 stack segment

Process 1

Process 2



Drawbacks of Segmentation
1. External fragmentation
2. Can address space be larger than physical memory?

How can we:
1. Make memory allocation easy?
2. Not have to worry about external fragmentation?
3. Allow address space size to be > physical memory?
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Next up …

Paging
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Next time …
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MMU strategies we’ll discuss:
1. Base and bounds.
2. Segmentation.
3. Paging.

user 
process

translator 
(MMU)

physical 
memoryvirtual

address
physical
address
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